Self-similar factor approximants.

نویسندگان

  • S Gluzman
  • V I Yukalov
  • D Sornette
چکیده

The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Padé approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Padé approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrapolation of power series by self-similar factor and root approximants

The problem of extrapolating the series in powers of small variables to the region of large variables is addressed. Such a problem is typical of quantum theory and statistical physics. A method of extrapolation is developed based on self-similar factor and root approximants, suggested earlier by the authors. It is shown that these approximants and their combinations can effectively extrapolate ...

متن کامل

Method of self-similar factor approximants

The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendental functions. In some cases, just a few terms in a power series make it possible to reconstruct a transcendental function exactly. Numerical conver...

متن کامل

Calculation of critical exponents by self-similar factor approximants

The method of self-similar factor approximants is applied to calculating the critical exponents of the O(N)-symmetric φ4 theory and of the Ising glass. It is demonstrated that this method, being much simpler than other known techniques of series summation in calculating the critical exponents, at the same time, yields the results that are in very good agreement with those of other rather compli...

متن کامل

Self-similar factor approximants for evolution equations and boundary-value problems

The method of self-similar factor approximants is shown to be very convenient for solving different evolution equations and boundary-value problems typical of physical applications. The method is general and simple, being a straightforward two-step procedure. First, the solution to an equation is represented as an asymptotic series in powers of a variable. Second, the series are summed by means...

متن کامل

Reconstructing Generalized Exponential Laws by Self-Similar Exponential Approximants

We apply the technique of self-similar exponential approximants based on successive truncations of continued exponentials to reconstruct functional laws of the quasi-exponential class from the knowledge of only a few terms of their power series. Comparison with the standard Padé approximants shows that, in general, the self-similar exponential approximants provide significantly better reconstru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003